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Non-linear solutions for smectic C liquid crystals in wedge

and cylinder geometries

by R. J. ATKIN and I. W. STEWART² *

School of Mathematics and Statistics, University of She� eld, She� eld S3 7RH,
England, U.K.

² Department of Mathematics, Strathclyde University, Livingstone Tower,
26 Richmond Street, Glasgow G1 1XH, Scotland, U.K.

(Received 2 October 1995; in ® nal form 8 January 1997; accepted 16 January 1997 )

This paper discusses some non-linear problems for smectic C liquid crystals based on the
continuum theory proposed by Leslie et al. New restrictions on the nine elastic constants are
also derived. Attention is restricted to samples involving concentric cylindrical layers in which
both the layer thickness and the tilt angle are assumed to be constant. Non-linear solutions
are presented for a sample contained in a wedge with an electric ® eld applied across the
bounding plates, extending earlier work by Carlsson et al., and for a sample between two
coaxial concentric circular cylinders to which an azimuthal magnetic ® eld is applied.
FreÂ edericksz thresholds, which may lead to the experimental determination of some of the
elastic constants, are deduced. In the absence of an applied ® eld it is found that, under
suitable restrictions on the elastic constants, there is a critical wedge angle (or critical radius
ratio in the concentric cylinder case) above which a variable non-linear symmetric solution
satisfying the zero boundary conditions is energetically more favourable than the zero solution.

1. Introduction its existence depends upon additional inequalities being
imposed which involve the elastic constants. A full non-The FreÂ edericksz transition caused by an electric ® eld
linear energy comparison demonstrates that, under cer-for cylindrical layers of smectic C liquid crystals con® ned
tain restrictions, the distorted con® guration is energetic-in a wedge has recently been examined theoretically by
ally more favourable than the original orientationCarlsson et al. [1] using the continuum theory proposed
pattern. Thus one anticipates that the distorted solutionby Leslie et al. [2, 3]. This FreÂ edericksz transition partly
occurs in preference to the uniform alignment and adepends on the elastic constants connected with layer
FreÂ edericksz transition results. It is found that the non-deformations (the A i constants mentioned below). These
linearly derived FreÂ edericksz threshold coincides withlayer constants are normally di� cult to obtain and the
that found in [1] when it is linearized. The new relation-geometrical arrangement of the wedge problem provides
ship between the critical voltage, the tilt angle, the wedgea possible experimental design where the FreÂ edericksz
angle and the elastic constants may provide a possibletype transition threshold can be measured.
method for determining experimentally the elasticAs Carlsson et al. [1] were principally concerned with
constants.deriving the relationship between the critical voltage and

The plan of this article is as follows: in § 2 thethe various material parameters, the results derived
mathematical description of smectic C liquid crystals isin [1] were obtained by linearizing the resulting Euler±
outlined brie¯ y. A new set of inequalities which theLagrange equation for the problem, ® rstly with respect
elastic constants must satisfy are derived in § 3 togetherto the smectic tilt angle h and secondly with respect to
with the basic Euler± Lagrange equation. The full ana-the c-director phase angle w which was assumed to
lysis for the a-dependent solution is presented in § 4. Independ only upon the angle a of the cylindrical polar
order to justify the assumption w=w(a) for the wedgecoordinate system (r, a, z) . One purpose of this article is
problem for large samples, in § 5 a linear solutionto extend the analysis in [1], retaining the non-linearities
w=w(r, a) is examined. In § 6 the full analysis for a non-in h and w, and derive a non-linear a-dependent solution
linear r-dependent solution is given. Here the sample ofto the wedge problem, the details of which are also of
liquid crystal is con® ned at rest between two coaxial,interest. This solution exists above a critical voltage and
concentric circular cylinders. A magnetic ® eld is applied
in the azimuthal direction so that it is everywhere
tangential to circles perpendicular to the common axis*Author for correspondence.
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586 R. J. Atkin and I. W. Stewart

and has its magnitude inversely proportional to the If the layering structure is assumed to remain intact so
that a remains ® xed then knowledge of the c-directordistance r from this axis. In this case the solution exists

above a critical ® eld strength which depends upon the completely describes the alignment of the director n

throughout the sample. For the solutions consideredtilt angle, elastic constants and the ratio of the cylinder
radii. Above this strength, the distorted con® guration is here the smectic planes form concentric cylinders whose

common axis coincides with the z-axis of a system ofenergetically more favourable compared with the initial
orientation pattern. As in the wedge, one anticipates cylindrical polar coordinates (r, a, z) . We introduce the

following ansatz for a, b, cthat above the critical strength the distorted solution
occurs in preference to the uniform alignment and a

a = rÃ , (4 )
FreÂ edericksz transition results. The relationship between
the critical ® eld strength, the geometry and the elastic b =Õ a Ã cos w+ zÃ sin w, (5 )
constants may provide the experimentalist with a further

c = a Ã sin w+ zÃ cos w, (6 )
method for determining some of the elastic constants.
However, care may be necessary as there is a critical where we assume w=w(r, a) and rÃ , a Ã and zÃ are the unit
wedge angle, or critical radius ratio in the coaxial basis vectors: r measures the outward radial distance,
cylinder case, and it is only below these values that a a is the usual polar angle and the z axis coincides with
FreÂ edericksz transition may be expected. In the absence the apex of the wedge (the common axis of the cylinders).
of applied ® elds, under suitable restrictions on the A i- From the geometry the director n is simply
constants, above these critical values a variable solution

n =a cos h + c sin h
exists which is energetically more favourable than the
initial pattern. The article concludes with a discussion = rÃ cos h+ a Ã sin h sin w+ zÃ sin h cos w. (7 )
in § 7.

As discussed in [1], for a wedge formed by two glass
plates at an angle b the boundary conditions on the2. Smectic C wedge and cylinder problems
director allow us to set w=0 when a=0, b. The electricLiquid crystals consist of elongated molecules where
® eld E follows the plane of the layers and is appliedthe molecular long axes locally align along a common
between the bounding plates at a =0, b. This ® eld isdirection in space which is generally denoted by the unit
achieved whenvector n, called the director. Smectic C liquid crystals

are known to form equidistant parallel layers in which
E =

U

rb
a Ã , (8 )n makes an angle h with respect to the layer normal.

Here the tilt angle h is taken to be constant and the
where U is the applied voltage across the cell. For fullerlayers are assumed to be of constant thickness. Following
details of the wedge geometry the reader is referredde Gennes and Prost [4], a smectic C liquid crystal can
to [1].be described by introducing the unit layer normal a and

For the sample between concentric cylinders of radii aa unit vector c which is the unit orthogonal projection
and b (>a) the appropriate boundary conditions areof the director n onto the smectic planes. The vectors a

w=0 when r=a, b. The magnetic ® eld takes the formand c are subject to the constraints

a a = c c=1, a c=0 (1)
B =

Ba

r
a Ã , (9 )

since a and c are clearly unit and orthogonal. Since we
are only concerned with samples which do not contain where B is the magnetic ® eld strength at r=a. This ® eld
dislocations the relation may be achieved by passing an electric current along a

wire situated along the z-axis.VÖ a =0 (2 )
It is known that when the strength of an electric (or

must also hold [5, 6]. The constraint (2) is known to magnetic) ® eld increases as it is applied across a sample
restrict the possible number of equidistant layer struc- of liquid crystal there is a critical threshold, the
tures and force the liquid crystals to form undistorted FreÂ edericksz threshold, above which the director n begins
parallel layers which form planes, concentric cylinders, to reorient itself as it is attracted or repelled by the ® eld.
spheres or parts thereof. More complicated equidistant FreÂ edericksz transitions in planar layers of smectic C
layerings consist of concentric circular tori, Dupin have been discussed by Rapini [13] and, as mentioned
cyclides [4, 7± 9] or parabolic cyclides [10± 12]. above, transitions for cylindrical layers in a wedge have

It is mathematically convenient to introduce the unit been investigated by Carlsson et al. [1]. A full analysis
vector b de® ned by of FreÂ edericksz transitions for spherical layers of

smectic C has been carried out by Atkin and Stewartb =a Ö c. (3 )
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587Smectic C in wedge and cylinder geometries

[14] for the usual cone and plate geometry. FreÂ edericksz dividing by either B1 or B2 when required ) we arrive at
the inequalitiestransitions in cylindrical and spherical geometries for

nematic liquid crystals have been examined by Atkin
and Barratt [15].

B1+B3 Ô 2B13>0[|B13 |<
1

2
(B1+B3 ) , (19)

3. Energies and the Euler ± Lagrange equation

The bulk elastic energy wb for a non-chiral smectic C B2+A12 Ô 2C1>0[|C1 |<
1

2
(B2+A12 ) , (20)

liquid crystal in terms of b and c is [1, 3]

B2+A21 Ô 2C2>0[|C2 |<
1

2
(B2+A21 ) . (21)wb=

1

2
A12 ( b VÖ c)

2+
1

2
A21 (c VÖ b)

2

+A11 ( b VÖ c) (c VÖ b) The electric energy density we is given by [4, p. 287]

+
1

2
B1 (V b)

2+
1

2
B2 (V c)

2

we=Õ
1

2
eae0 (n E )2, (22)

+
1

2
B3C 1

2
( b VÖ b + c VÖ c)D2

where ea is the dielectric anisotropy of the liquid crystal
and e0 is the permittivity of free space. It is assumed
throughout that ea>0.+B13 (V b)C 1

2
( b VÖ b + c VÖ c)D The calculation of the equilibrium con® guration is

obtained by minimizing the total energy integral W over
+C1 (V c) (b VÖ c) +C2 (V c) (c VÖ b), (10)

a volume V given in cylindrical coordinates by
where the elastic constants A i, B i and C i are related to
those introduced by the Orsay Group [6], the slight

W = P
V

(wb +we )r dr da dz= P
V

wÅ dr da dz, (23)di� erence being that A11 =Õ 1
2A

Orsay
11 and C1=Õ C

Orsay
1 .

A physical interpretation of these constants and their
related deformations can be found in [1]. putting wÅ = (wb+we ) r. The resulting Euler± Lagrange

It is known that the elastic constants obey the follow- equation is derived from
ing inequalities [1]:

A12 , A21 , B1 , B2 , B3>0, (11) q
qr

qwÅ

q(w ,r)
+

q
qa

qwÅ

q(w ,
a
)
Õ

qwÅ

qw
=0, (24)

A12 A21 Õ A
2
11 >0, (12)

where a comma denotes partial di� erentiation withB1 B3 Õ B
2
13 >0, (13)

respect to the variable it precedes. Working in cylindrical
B2A12 Õ C

2
1>0, (14) coordinates, we substitute equations (5), (6 ) into (10)

and equations (7), (8 ) into (22) to ® ndB2A21 Õ C
2
2>0. (15)

We now derive some new inequalities which will be
wÅ =

1

2r
(A12 sin4

w+A21 cos4
w Õ 2A11 sin2

w cos2
w)useful later. Clearly

(A12 Ô A11 )
2=A

2
12 +A

2
11 Ô 2A12A11 >0. (16)

+
1

2r
(B1 sin2

w+B2 cos2
w) (w ,

a
)
2

Adding expression (12) to these inequalities and dividing
by A12 , which is positive, gives the two inequalities

+
r

2
B3(w ,r)

2+B13 sin w w,
a
w,rA12 +A21 +2A11>0, A12 +A21 Õ 2A11 >0.

(17)

+
1

r
(C1 sin2

w Õ C2 cos2
w) cos w w,

a
This also implies that

|A11 |<
1

2
(A12+A21 ) . (18)

Õ
1

2
eae0

U
2

rb
2 sin2

h sin2
w. (25)

Similarly, by considering the quantities (B1 Ô B13 )
2
,

(B2 Ô C1 )
2
, (B2 Ô C2)

2 and adding the inequalities (13), Substituting equation (25) into (24) and multiplying
throughout by r yields the following governing(14), (15) to each quantity, respectively (and suitably
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588 R. J. Atkin and I. W. Stewart

equilibrium equation for the wedge problem we assume that the distortion is symmetric about
a =b/2, that is,

(B1 sin2
w+B2 cos2

w)w ,
aa

+
1

2
(B1 Õ B2 ) sin 2w(w ,

a
)
2

w(a) =w ( b Õ a) , 0 a b/2, (32)

w ¾ ( b/2 ) =0, w( b/2 ) =wm , (33)+ rB13 cos w w,
a
w ,r+2rB13 sin w w,r

a
+ rB3w ,r+ r

2
B3w,rr

where, without loss of generality, we suppose that wm>0.
+2[(A21 +A11 ) cos2

w Õ (A12 +A11 ) sin2
w] sin w cos w

Upon integration, taking into account condition (33),
equation (30) gives

+eae0AU

b B2

sin2
h sin w cos w=0. (26)

(B1 sin2
w+B2 cos2

w) (w ¾ )2

=d
2
(sin2

wm Õ sin2
w)For the magnetic case we is replaced by wm de® ned by

[4] Õ (A12+A21 +2A11 ) (sin4
wm Õ sin4

w) . (34)

Since B1>0, B2>0 for real solutions of this type towm=Õ
xa

2m0
(n B )2, (27)

exist, the right-hand side of equation (34) must be
positive for all w and wm between 0 and p/2. In view ofwhere m0 is the permeability of free space and xa is the
inequality (17) it is necessary to assume thatmagnetic anisotropy of the liquid crystal. It is assumed

that xa>0. We are now in a position to seek solutions d
2 Õ 2 (A12 +A21 +2A11 ) >0 (35)

of equation (26) and its magnetic counterpart subject to for a solution of the form of equation (6) with w=w(a)
suitable boundary conditions. to exist. A further integration of equation (34) then gives
Remark: When there is no ® eld present, three constant

a= P w

0

(B1 sin2
j+B2 cos2

j)
1/2

[F (j, wm ) (sin2
wm Õ sin2

j)]1/2 dj, 0 a b/2,stable solutions are possible (see Carlsson et al. [1])
depending upon the signs of the A i constants. If this

(36)stable solution is di� erent from the imposed boundary
conditions, there is the possibility of a non-zero variable where
solution for w. Such variable solutions can occur in the

F (j, wm ) =d
2 Õ (A12 +A21+2A11 ) (sin2

wm+ sin2
j) .

wedge geometry when the wedge angle is greater than a (37)
critical angle. This is discussed in § 4 after equation (52).

The solution is completed by expression (32) and theAn analogous situation arises in the concentric cylinder
parameter wm , the angle b and the applied voltage Ucase and a critical radius ratio is obtained at the end
must satisfyof § 6.

b

2
= P wm

0

(B1 sin2
j+B2 cos2

j)
1/2

[F (j, wm ) (sin2
wm Õ sin2

j)]1/2 dj. (38)4. a-dependent solution in a wedge

Restricting attention to the case when w=w(a) equa-
wm therefore depends upon b, U and the material con-tion (26) reduces to
stants. For a given liquid crystal, if we ® x b then a
variation in U gives rise to a variation in wm .(B1 sin2

w+B2 cos2
w)w +

1

2
(B1 Õ B2 ) sin ( 2w) (w ¾ )2

Making the substitution

Õ 2 (A12 +A21 +2A11 ) sin3
w cos w+d

2 sin w cos w =0, sin j= sin wm sin n (39)
(28)

equation (38) becomes
where a prime denotes di� erentiation with respect to a

and for convenience we set
b

2
= P p

/2

0
{(B1 Õ B2) sin2

wm sin2
n+B2}

1/2

d
2=eae0 (U/b)

2 sin2
h+2 (A21 +A11 ) . (29)

Ö {( 1 Õ sin2
wm sin2

n) [d
2 Õ (A12+A21 +2A11 )

Multiplying equation (28) by w ¾ allows it to be reformul-
Ö ( 1 + sin2

n) sin2
wm]} Õ 1/2 dn. (40)ated as

Since this integrand is a continuous function of wm andd

da
[(w ¾ )2

(B1 sin2
w+B2 cos2

w) n for wm×(Õ p/2, p/2 ) and n×[0, p/2), it follows that the
integral in equation (40) is a continuous function of
wm for wm×(Õ p/2, p/2). Also, for ® xed U/b, the inte-Õ (A12+A21 +2A11 ) sin4

w +d
2 sin2

w]=0. (30)
grand is an even function of wm and so we need

In conjunction with the boundary conditions
only consider the behaviour for wm×[0, p/2). Since
A12+A21+2A11 >0, it can be shown that for suchw( 0 ) =w( b) =0 (31)
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589Smectic C in wedge and cylinder geometries

values of wm the integral is a monotonic increasing using the boundary conditions (31). Using equations
function of wm taking all values greater than its minimum (34), (37) and (39) this becomes
which occurs at wm =0. Taking the limit as wm � 0 in
equation (40), the minimum value of the right-hand side D W =hl P b

/2

0
[d

2 (sin2
wm Õ 2 sin2

w)
is pB

1/2
2 /( 2d ) and so the solution (6 ) can only exist if the

voltage U and the angle b are such that
Õ (A12 +A21 +2A11 ) (sin4

wm Õ 2 sin4
w)] da

d>pB
1/2
2 /b (41)

=hl P wm

0

(B1 sin2
w+B2 cos2

w)
1/2

[F (w, wm ) (sin2
wm Õ sin2

w)]1/2in which case both this solution and the uniform orienta-
tion w 0 are possible solutions. Squaring inequality
(41) shows that for a given b there exists a critical Ö [d

2 (sin2
wm Õ 2 sin2

w)

voltage Uc given by
Õ (A12 +A21 +2A11 ) (sin4

wm Õ 2 sin4
w)] dw (49)

eae0 U
2
c sin2

h=p
2
B2 Õ 2b

2
(A21 +A11 ) . (42)

=hl sin2
wm P p /2

0

(B1 sin2
w+B2 cos2

w)
1/2

[F (w, wm ) (1 Õ sin2
wm sin2

n)]1/2It is known [1] that for small h

A21 +A11= (AÂ 21 +AÂ 11 )h
2
, (43)

Ö [cos ( 2n)F (w, wm )
B2=BÂ 2h

2
, B3=BÂ 3h

2
, B13=BÂ 13h

3
, (44)

Õ (A12 +A21 +2A11 ) sin2
wm sin2

n] dn
where the constants AÂ i , BÂ i can be assumed to be only
weakly temperature dependent (that is, independent

=Õ
1

2
hl sin2

wm P p /2

0
sin ( 2n)of h ) . Using these relationships in the case of small h

reduces the threshold (42) to the critical value derived
by Carlsson et al. [1, equation (31)], namely d

dn
Ö G[F (w, wm ) (B1 sin2

w+B2 cos2
w)]1/2

cos w Hdn

eae0 U
2
c =p

2
BÂ 2 Õ 2b

2
(AÂ 21+AÂ 11 ) . (45)

Õ hl(A12 +A21 +2A11 ) sin4
wmTo examine which of the two solutions is more likely

to occur when expression (41) holds, we examine the
Ö P p /2

0 C B1 sin2
w +B2 cos2

w

F (w, wm ) (1 Õ sin2
wm sin2

n)D1/2

sin2
n dndi� erence between the energies of the solution w 0 and
(50)the non-linear solution given by equations (32), (33),

(36) and (38). This comparison determines which solu- using integration by parts. Clearly, in view of the inequal-
tion is energetically more favourable, the solution with

ities (17), the second term in the last equality above is
the lower energy being preferred. Using equation (23),

negative. Straightforward di� erentiation also shows that
the total energy for the sample occupying the region
a r b, 0 a b, 0 z h is given by d

dnG[F (w, wm ) (B1 sin2
w+B2 cos2

w)]1/2

cos w H
W = P

b

a
dr P b

0
da P

h

0
wÅ dz. (46)

=
B1 sin ( 2n) sin2

wm

2 cos3
w[F (w, wm ) (B1 sin2

w+B2 cos2
w)]1/2Putting

Ö {d
2 Õ (A12 +A21+ 2A11 )

l= lnAb

aB , (47)
Ö [sin2

wm+1 + (B2 /B1 Õ 1 ) cos4
w]}

setting D W = W (w (a)) Õ W (w 0 ) and using equation
>0 (51)

(25) we obtain
for all w, wm×[0, p/2) and for 0 <n<p/2 under assump-

D W =
1

2
hl P b

0 G (B1 sin2
w+B2 cos2

w) (w ¾ )2 tion (35) if B2 B1 . It is also positive if B2>B1 provided
sin2

wm+B2 /B1<2 which is only possible for
B1<B2<2B1 . It therefore follows that if B2 B1 or+ (A12+A21 +2A11 ) sin4

w Õ d
2 sin2

w
B1<B2<2B1 then

+
d

daC 1

3
(C1+C2) sin3

w Õ C2 sin wD Hda D W <0 (52)

and so we anticipate the variable solution to occur in
=

1

2
hl P b

0
{(B1 sin2

w+B2 cos2
w) (w ¾ )2

preference to the uniform solution w 0 whenever U

and b satisfy equation (41). ( If wm is assumed to be
su� ciently small, then the inequalities involving B1 and+ (A12+A21 +2A11 ) sin4

w Õ d
2 sin2

w} da (48)
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590 R. J. Atkin and I. W. Stewart

B2 need not be considered since B2 would then be the the same as that given above veri® es that expression
(52) holds for the energy di� erence between these twodominant constant.)

It is worth commenting further on expressions (35) solutions. Hence, in these circumstances the system
prefers the variable solution when there is no ® eldand (42). For the variable non-linear solution to exist,

it is necessary for (35) to hold and for the right-hand present and b>bc . The solution for w (s) can be obtained
numerically if necessary from equation (36) once wm hasside of (42) to be positive. We also need the right-hand

side of equation (29) to be positive for all U >Uc , but been calculated from equation (38), where suitable estim-
ates for the elastic constants have been inserted asthis follows from (29) and (42) since B2>0. The condi-

tions for these restrictions to be satis® ed depend upon needed. Clearly, from expression (40), since b must be
physically restricted between 0 and 2p, there must be athe sign of the combinations A12 +A11 and A21 +A11 .

Since A12 +A21+2A11 >0, both combinations cannot maximum allowed value for wm which can be calculated
numerically if desired. The critical parameter in equa-be negative. If A12 +A11 <0 then A21 +A11>0,

(35) holds and we need tion (55) is the same as that discussed in [1, equa-
tion (35)] with the advantage here being that the solution

p
2
B2 Õ 2b

2
(A21 +A11 ) >0, (53)

for w (a) when b>bc can be obtained.
or

5. r- and a-dependent solutions in a wedge

b<
pB

1/2
2

[2 (A21 +A11 )]1/2 . (54) For a ® nite wedge it is necessary to allow w to vary
with both r and a. Whilst equation (26) cannot be solved
analytically, it is possible to obtain the FreÂ ederickszThis leads to a critical wedge angle bc given by
threshold and gain some useful information about the
constant B3 by considering a linearized problem.bc=

pB
1/2
2

[2 (A21+A11 )]1/2 . (55)
Linearizing equation (26) in w results in the equation

If A12 +A11 >0, then A21 +A11 can be either positive
B2w ,

aa
+B3w,ss+d

2
w=0, (59)

or negative. Both these cases can be considered together.
where the new variable s is de® ned byFor expression (35) to be satis® ed for all U Uc we

need
s= lnA r

aB (60)
p

2
B2 Õ 2b

2
(A12 +A21+2A11 ) 0 (56)

and when this inequality holds, the right-hand side of and d
2 is given by equation (29). We now consider a

equation (42) is positive irrespective of the sign of sample in the ® nite region 0 s l, 0 a b, where l is
A21 +A11 . This leads to a second critical angle given by de® nition (47), subject to w (s, a) being zero on

the boundaries at s=0, l and a =0, b. Using de® nitions
bÅ c=

pB
1/2
2

[2 (A12 +A21 +2A11 )]1/2 . (57) (47) and (60) this gives

w( 0, a) =w ( l, a) =0, 0 a b, (61)As mentioned at the end of § 3, when E 0 w 0 need
not be the only solution to equation (28) satisfying the w (s, 0 ) =w(s, b ) =0, 0 s l. (62)
zero boundary conditions (31). If A21+A11 >0 and

Equation (59) is a form of the Helmholtz equation andthere is no ® eld, then d
2=2 (A21 +A11 )>0 and, to

can be solved using the standard technique of separationsatisfy expression (35), we must have A12 +A11 <0. In
of variables. A simple ansatz corresponding to the ® rstthis case, when A21 +A11>0, A12+A11 <0, the stable
eigenfunction of such a solution satisfying the boundaryconstant solution is w=p/2 and so there is likely to be
conditions iscompetition with the boundary condition w=0 for a

large enough wedge angle, giving rise to a variable
w(s, a) =wm sinAp

l
sB sinAp

b
aB (63)solution. From the above working a non-zero symmetric

variable solution exists whenever inequality (41) is true,
that is, whenever for some suitably small constant wm , this perturbation

reaching its maximum when s= l/2 and a =b/2.
b>bc , (58)

Substituting equation (63) into (59) gives the critical
where bc is given by equation (55). When 0 b bc , threshold voltage Uc as
w 0 is the only symmetric solution satisfying the zero
boundary conditions. For b>bc both the zero solution eae0U

2
c sin2

h=p
2
B2 Õ 2b

2
(A21 +A11 ) +Ap

l
bB

2

B3 .
and the variable solution w(a) (given in equation (36)
with E =0 ) are possible and an energy argument almost (64)
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591Smectic C in wedge and cylinder geometries

Clearly, this threshold is approximated to by the thresh- boundary conditions on the outer radial boundary then
old given in equation (42) in a radially large sample
when l is large wÃ (s, a) =wm s sinAp

b
aB (69)

An alternative and more direct derivation of the
FreÂ edericksz threshold is possible using the energy. is always a form of solution to equation (59) which,
Equation (63) is the simplest perturbation that can be when inserted into (59), gives exactly the same threshold
made that satis® es the boundary conditions when wm is as the a-dependent solution given in equation (42).
su� ciently small. An energy comparison between this Unfortunately this solution may grow unacceptably
perturbation and the initial unperturbed con® guration large for the linearized version of the equations to
w 0 can be carried out by inserting (63) directly into be valid.
the energy given by equations (23) and (25) and retaining
terms up to the order w

2
m , assuming the sample V is of 6. r-Dependent solution between cylinders

thickness h in the z-direction. Setting So far the solution (4) to (6) has been applied to the
case when an electric ® eld of the form (8) is applied to

D W = W (w(r, a)) Õ W (w 0 )
a sample of smectic liquid crystal occupying a wedge. In
this section, a magnetic ® eld of the form (9) is appliedwe obtain
to a sample between two coaxial circular cylinders of
radii a and b (a <b) , the z-axis coinciding with the

D W =h P
l

0 P b

0 G Õ (A21 +A11 )w
2 Õ

1

2
eae0AU

b B2

sin2
hw

2

common axis of the cylinders. We again take w=0 on
the boundaries so that

+
1

2
[B2 ( w ,

a
)
2 Õ 2C2w,

a
]+

1

2
B3(w ,s)

2Hds da. (65) w(a) =0, w(b) =0. (70)

These boundary conditions correspond to n =nb where
From the boundary conditions (62)

nb = rÃ cos h+ zÃ sin h, (71)

that is, on the boundary the director is in the rz-planeP b

0
w,
a
da=0 (66)

making an angle p/2 Õ h with the cylinders. The corres-
ponding equation for w when a magnetic ® eld is appliedand hence equation (65) is
is obtained from equation (26) by replacing eae0 (U/b)

2

with xa B
2
a

2
/m0 , these quantities being de® ned earlier.

D W =h
w

2
m

2 P
l

0
sin2Ap

l
sB ds P b

0
Taking w=w(r) , equation (26) reduces to

B3[r
2
w (r) + rw ¾ (r)] Õ 2 (A12 +A21 +2A11 ) sin3

w cos w

Ö GC Õ 2 (A21+A11 ) Õ eae0AU

b B2

sin2
hD + c

2 sin w cos w=0, (72)

where
Ö sin2Ap

b
aB+B2Ap

bB2

cos2Ap

b
aB Hda

c
2=

xa

m0
B

2
a

2 sin2
h+2 (A21 +A11 ) . (73)

+h
w

2
m

2 P
l

0
cos2Ap

l
sB ds P b

0
B3Ap

lB
2

sin2Ap

b
aB da When there is no magnetic ® eld there is a solution of

equation (72) satisfying the boundary conditions (70),
namely,=hlw

2
m

b

8C Õ 2 (A21+A11 ) Õ eae0 sin2
hAU

b B
2

w 0. (74)

Although (74) remains a solution when B is non-zero,+B2Ap

bB2

+B3Ap

lB2D . (67)
there are other possibilities. Introducing the variable s

and the constant l de® ned in (47) and (60), equation (72)
Clearly, becomes

D W <0 only if U >Uc , (68) B3w (s) Õ 2 (A12+A21 +2A11 ) sin3
w cos w

where Uc is the threshold given by equation (64) and + c
2 sin w cos w=0 (75)

therefore this perturbed solution w(s, a) is energetically
with

favoured near the critical threshold.
It is perhaps worth remarking that if there are no w( 0 ) =0, w ( l ) =0. (76)
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592 R. J. Atkin and I. W. Stewart

Multiplying equation (75) by w ¾ (s) , it follows that are possible. Squaring inequality (84) shows that for
given radii there exists a critical ® eld strength Bc given
by

d

ds
[B3 (w ¾ )2 Õ (A12+A21 +2A11 ) sin4

w+ c
2 sin2

w]=0.

xam Õ 1
0 B

2
c a

2 sin2
h=p

2
B3[ ln (b/a)] Õ 2 Õ 2 (A21 +A11 ) .(77)

(85)
In view of the boundary conditions (76) it is natural to
look for a solution in which w(s) is symmetric about As before, we consider the di� erence in the energies
s= l/2 so that associated with these solutions. In this case using equa-

tions (23), (25) and (46) (with b =2p) and equation (80)
w(s) =w( l Õ s) , 0 s l/2, (78)

and D W =ph P
l

0 CB3Adw

dsB
2

w ¾ ( l/2 ) =0, w( l/2 ) =wm , (79)

where, without loss of generality, we suppose that wm >0. + (A12+A21 +2A11 ) sin4
w Õ c

2 sin2
wD ds

Integrating equation (77), taking into account (79), gives

B3[w ¾ (s)]2= c
2 (sin2

wm Õ sin2
w)

=2ph P
l/2

0
[c

2 (sin2
wm Õ 2 sin2

w)
Õ (A12 +A21+2A11 ) (sin4

wm Õ sin4
w) .

(80) Õ (A12 +A21 +2A11 ) (sin4
wm Õ 2 sin4

w)] ds

Since B3>0 for real solutions of this type to exist, we
require that the right-hand side of equation (80) is =2phB

1/2
3 P wm

0
[F (w, wm ) (sin2

wm Õ sin2
w)] Õ 1/2

positive for all w and wm between 0 and p/2. Condition
(35) with d replaced by c ensures this. A further integra- Ö [c

2 (sin2
wm Õ 2 sin2

w)
tion of equation (80) then gives

Õ (A12 +A21 +2A11 ) (sin4
wm Õ 2 sin4

w)] dw.

(86)
s=B

1/2
3 P w

0
[F (j, wm ) (sin2

wm Õ sin2
j)] Õ 1/2 dj ,

This integral is a special case of the integral in equa-
0 s l/2, (81) tion (49) and by putting B1=B2=B3 in the working

presented there, it follows thatwhere here F (j, wm ) is the function de® ned in equa-
tion (37) with d replaced by c. The solution is completed D W <0 (87)
by equation (78) and the parameter wm , the gap width

in this case and so we anticipate the variable solutionand the magnetic ® eld must satisfy
to occur in preference to the uniform solution w 0

whenever B, a and b satisfy inequality (84).l =2B
1/2
3 P wm

0
[F (j, wm ) (sin2

wm Õ sin2
j)] Õ 1/2 dj .

For the above variable solution to exist, the condition
(35) with d replaced by c has to be satis® ed and the(82)
right-hand side of equation (85) has to be positive.

Using the variable n de® ned by (39), this becomes
Following a similar argument to that given in § 4 for the
wedge, the corresponding conditions follow from equa-

l=2B
1/2
3 P p /2

0
(1 Õ sin2

wm sin2
n) Õ 1/2

tions (53), (54) and (56) by replacing b by ln (b/a) and
B2 by B3 . In particular in the case when A12 +A11 <0,

Ö [c
2 Õ (A12+A21 +2A11 ) (1+ sin2

n) sin2
wm] Õ 1/2 dn. A21+A11 >0 there is a critical radius ratio lc given by

(83)
lc=

pB
1/2
3

[2 (A21+A11 )]1/2 . (88)Repeating the argument following equation (40), it fol-
lows that l is a monotonic increasing function of wm

As in § 4, there can be variable solutions when no ® eldtaking all values greater than its minimum which occurs
is present since when B 0, w 0 need not be the onlyat wm=0. The minimum value of the right-hand side of
solution to equation (72) satisfying the zero boundaryequation (83) is pB

1/2
3 /c and so the solution (6) can only

conditions. For example, when there is no ® eld, ifexist if the magnetic ® eld strength B and the ratio of the
A21+A11 >0 then c

2=2 (A21 +A11 )>0 and, if the cor-radii a and b are such that
responding condition in (35) with d replaced by c is

c>pB
1/2
3 /l, (84) satis® ed, then we must have A12 +A11 <0. When this is

the case, there is a symmetric non-zero variable solutionin which case both this solution and the solution w 0
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593Smectic C in wedge and cylinder geometries

provided inequality (84) holds, that is, tion w=w(a) is well founded for the analysis carried out
in § 4 above.

l> lc , (89)
One of the major assumptions throughout § 4 and § 5

is that the dielectric anisotropy ea is positive, which iswhere lc is given by equation (88). The solution w 0 is
generally known to be true for some smectic C liquidthe only symmetric solution satisfying the zero boundary
crystals. Nevertheless, there are also smectics which haveconditions for 0 l lc while both this zero solution
ea<0. This change in sign radically a� ects the governingand the symmetric variable solution w(s) given by equa-
equation (26): for example, the assumption (35) cannottion (81) exist for l> lc . When l> lc an almost identical
be true for d de® ned by (29) when U is very largeargument to that used above shows that D W <0 for the
because of inequality (17).energy di� erence between these solutions, which indi-

An r-dependent solution was found for equation (26)cates the system’s preference for the variable solution
when a sample of smectic C liquid crystal is con® nedwhen l> lc . The behaviour of the solution w (s) in these
between two coaxial circular cylinders. The governingcircumstances can be calculated numerically via equa-
equation (72) with boundary conditions (70) was con-tion (81) if desired, once estimates for the elastic con-
veniently transformed to equation (80), making nostants are inserted and wm has been calculated from
approximations on the smectic tilt angle h. A full non-equation (82). It is clear from equation (83) that wm � p/2
linear analysis of equation (80) enabled the derivationas l � 2.
of the critical magnetic ® eld strength Bc , given by (85).
This threshold has a form reminiscent of the electric7. Discussion
® eld case given in (42), except that B3 takes the place ofThe results presented in this article generalize those
B2 . From (85) it is seen that by varying the relativein [1] to the full non-linear di� erential equation (26).
distance between the two coaxial cylinders it would beWith the aid of some new inequalities given in (17) and
possible to measure B3 and the combination A21 +A11(18), a full non-linear analysis has been accomplished
from the same type of experiment; this is analogous tofor the a-dependent smectic C wedge problem where no
varying the wedge angle b in (42) to measure B2 andapproximations were made in the smectic tilt angle h.
A21+A11 . An energy comparison between the w 0The non-linearly derived critical electric ® eld strength
solution and the non-linear variable solution for B>BcUc given by equation (42) was shown to reduce to the
revealed the system’s preference for the variable solutionapproximating threshold given in equation (45) which
to occur above the FreÂ edericksz threshold. Conditionswas previously derived in [1] by linearizing in the tilt
(53) and (56) for the wedge and the correspondingangle h. Introducing restrictions on the elastic constants
conditions for the cylinder may impose restrictions onand the wedge angle b (equations (53) or (56)), a non-
the geometry. It should be mentioned that FreÂ ederickszlinear solution (not identically zero) exists for U >Uc
transitions in planar layers of smectic were examined byand, provided B2 B1 or B1<B2 2B1 , this solution is
Schiller and Pelzl [16] who obtained some experimentalenergetically favoured over the zero solution for U >Uc .
values for B =B1 cos2

h+B3 sin2
h. A general smecticClearly, since B2>0, the wedge angle b can always be

elastic constant B has also been measured for variousmade su� ciently small so that the inequalities given in
smectic materials at di� erent temperatures by Pelzl(53) and (56) are achieved. It would be of interest to
et al. [17].know how restrictive these inequalities may actually be

It was also demonstrated in § 4 and § 6 that non-linear
for experiments.

variable solutions are possible for wedge and cylinder
The dependence of the solution w on the coordinates

geometries in the absence of ® elds. If A21 +A11 >0 and
r and a in the wedge problem was discussed in § 5 where

A12+A11 <0 then it was shown that there is a critical
equation (26) was linearized in w while no approxi-

angle bc for wedges and a critical radius ratio lc for
mations on h were introduced. The resulting critical cylinders (given by equations (55) and (88), respectively)
electric ® eld threshold Uc is given by equation (64) where values above these critical values can lead to non-
which, unlike the threshold given in (42), shows the zero solutions of the governing equilibrium equations
dependence of Uc upon the elastic constant B3 . For which are energetically favourable. These solutions can
radially large samples, the B3 contribution to Uc is then be calculated numerically from equations (36) and (38)
seen to become correspondingly smaller. A simple energy for the wedge and equations (81) and (82) for the
comparison (to second order in w) of this solution and cylindrical geometry using estimates for the elastic
the w 0 solution further justi® ed Uc as the critical constants.
threshold. The general conclusion is that introducing
both a- and r-dependence into the solution w does not References
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